Pink Iguana

Home » Talk » The Chip Design Game at the End of Moore’s Law

The Chip Design Game at the End of Moore’s Law


Robert Colwell, DARPA,The Chip Design Game at the End of Moore’s Law,  HotChips Aug 2013,  here.  Killer good talk.

End of Moore’s Law revives special purpose designs

When Moore’s Law ends, it will be economics that stops it, not physics. Keep your eye on the money.

Marat Dukhan, What a fast FPU means for Algorithms: A Story of Vector Elementary Functions, Hotchips 2013, here.  Very nice poster summary

Kevin Morris, EE Journal, FPGA Wars, here.

Unlike other semiconductor devices – processors, memory, etc. – FPGAs are in a unique position to take maximum advantage of Moore’s Law improvements in semiconductor technology. FPGA companies turn this technology advantage into market advantages – and into some of the biggest margins in the world of semiconductors. Each new process node brings a bounty to the world of FPGAs – usually in the form of lower power consumption, greater density (and thus greater functionality), larger IO capacity and bandwidth, and – to a lesser degree, more speed.

Fundamentally fueling the FPGA rocket… are dogs skateboarding. That may sound a bit strange. With the number of smartphones on Earth exploding – and reaching a number equal to a sizeable percentage of the world’s population, and, with a significant portion of those people wanting to do high-bandwidth tasks on those smartphones (and tablets, and other “connected” devices) – such as watching videos, we have a global appetite for bandwidth that is almost incomprehensible. With the growing popularity of cloud-based services, there is no sign of that voracious appetite waning anytime soon.

The people in the business of building the pipes that carry all that data – the Ciscos of the world and their kin – are by far the largest users of FPGAs. Anything the FPGA companies can do to let them build bigger data pipes and switches is warmly welcomed. Anything the FPGA companies can do to reduce the power consumption and cost of those data pipes is an enormous bonus. While FPGA companies have been working diligently to expand FPGAs into other markets – consumer, automotive, industrial, display, etc. – the biggest line on the revenue sheet is still communications and networking.

As we mentioned in our recent article on the new Achronix/Intel FPGA collaboration, the high-end of the FPGA market has been a stable duopoly for years. Xilinx and Altera play the one-two roles almost as poster-children for a duopoly marketing textbook.

Now, the stability of the high-end FPGA duopoly is being challenged.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s

%d bloggers like this: